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Abstract

Fail-slow hardwares are still running and functional, but in a
degraded mode, thus slower than their expected performance.
Bugs triggered by fail-slow hardwares cause severe cloud
system failures. Existing testing tools fail to efficiently detect
these bugs due to overlooking their characteristics. In order
to address this problem, this paper provides a bug study that
analyzes 48 real-world fail-slow hardware failures from typi-
cal cloud systems. We observe that (1) fail-slow hardwares
make high-level software components vulnerable, including
synchronized and timeout mechanisms; (2) the fine granular-
ity of fail-slow hardwares is necessary to trigger these bugs.
Based on these two observations, we propose Sieve, a fault
injection testing framework for detecting fail-slow hardware
failure bugs. Sieve statically analyzes target system codes to
identify synchronized and timeout-protected I/O operations as
candidate fault points and instruments hooks before candidate
fault points to enable fail-slow hardware injection. To effi-
ciently explore candidate fault points, Sieve adopts grouping
and context-sensitive injection strategies. We have applied
Sieve to three widely deployed cloud systems, i.e., ZooKeeper,
Kafka, and HDFS. Sieve has detected six unknown bugs, two
of which have been confirmed.

1 Introduction

Cloud systems have become the backbone of numerous mod-
ern applications [29, 57,61, 65]. However, fault-triggered fail-
ures in cloud systems cause severe loss of customer satisfac-
tion and revenues for service providers [9, 19, 53]. To achieve
high reliability, cloud systems need to correctly handle var-
ious faults [1, 10,37,42]. Based on the scope of faults, we
classify them into two categories: coarse-grained and fine-
grained faults. Specifically, when only considering I/O oper-
ations in a cloud system, let D={D1,D;,...,D, } represent the
set of disk I/O operations and N={N1,N,,...,N,, } represent the
set of network I/O operations. Coarse-grained faults affect
all associated I/O operations, e.g., the I/O operations in D
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Figure 1: A production ZooKeeper failure due to the fail-
slow NIC [11]. The writeRecord operation becomes slow
within the synchronized block. The update-type requests are
blocked. Developers fixed the bug by copying the node object
and serializing the copy out of the synchronization.

fail in fail-stop disks [46] and those in DUN fail in node
crashes [16,42]. Fine-grained faults affect a subset of associ-
ated I/O operations, e.g., fail-slow Network Interface Cards
(NICs) [22] slow down Ny, (Ng» C N). Coarse-grained faults
have been well studied and handled by existing well-designed
fault tolerance mechanisms [5, 18,52,56]. However, emerging
fine-grained faults propose new challenges to the reliability
of cloud systems.

Recently, fail-slow hardwares [22,44] received an increas-
ing amount of attention, which deliver lower-than-expected
performance and cause fine-grained faults. For example, the
throughput of a 1-Gbps NIC might suddenly drop by several
orders of magnitude to 1 Kbps due to partial buffer corruption
and retransmission [12], which slows down partial network
I/O operations. Lu et al. [44] indicate that the fail-slow NVMe
SSD has become a widespread and severe problem. On aver-
age, 1.41% of NVMe SSDs (over one million NVMe SSDs)
are infected within four months of monitoring. Moreover,



fail-slow hardware incidents always consume hours or even
months to detect. Only 1% of the cases are detected in min-
utes [22]. As a consequence, once fail-slow hardwares bring
cloud systems down, it requires large human efforts to detect
the root cause. For example, several AWS services become un-
available due to unexpected high network latency [53], which
takes developers nine hours to detect the root cause. Figure |
presents another real-world fail-slow hardware failure from
ZooKeeper [11] which is a widely used distributed coordi-
nation to tolerate leader and follower crashes. Specifically,
an entire cluster becomes a near-freeze status. write () and
create () requests fail, but read () requests can be success-
fully processed. The developers at PagerDuty [50] spend five
months to diagnose this failure. In this paper, we refer to the
fault caused by the fail-slow hardware as the FSH fault and
the bug triggered by the FSH fault as the FSH bug. We define
fail-slow hardware failures as the failures caused by FSH
bugs and refer to these failures as FSH failures.

To prevent the FSH fault from breaking cloud systems
at runtime, it is essential to develop an FSH fault injection
testing framework. Fault injection testing [1, 6, 14, 16, 21,
31,32,42,48] is a commonly used technique for detecting
fault-triggered bugs. There are enormous efforts in developing
various fault injection testing frameworks. However, existing
schemes fail to efficiently detect FSH bugs due to overlooking
the characteristics of FSH failures. To address this problem,
we conduct a study of 48 real-world FSH failure cases from
five large-scale and open-source systems. Furthermore, we
observe that there are two key characteristics in efficiently
detecting FSH failures like the example in Figure 1.

1) The vulnerable synchronized and timeout mechanisms
cause all studied FSH failures. For example, synchronized
tasks slowed down by fail-slow hardwares block other tasks
for an uncertain time; data race can occur between the timeout
task caused by the fail-slow hardware and the corresponding
timeout handler with simple timing constraints. This charac-
teristic can significantly prune the huge fault injection space.
However, existing bug studies overlook this characteristic
since they focus on either the fail-slow software or hardware.
Unlike them, our bug study comprehensively analyzes how
the fail-slow hardware affects the software.

2) The fine granularity of FSH faults is necessary to trig-
ger FSH failures. One of the main reasons is that fine-grained
FSH faults are relatively easy to escape the detection of inter-
nal checkers. For example, as shown in Figure 1, there are two
network I/O operations, i.e., serializeNode and Heartbeat.
The fail-slow NIC only slows down serializeNode so that
the heartbeat thread in the leader can maintain the liveness of
the cluster. Hence, the entire cluster becomes a near-freeze sta-
tus. In this scenario, the fail-slow NIC escapes the detection of
the heartbeat threads in the followers. The fine-grained fault
injection is necessary to trigger such failure. Specifically, if a
fail-stop NIC is injected in the leader, these two network I/O
operations are affected. Subsequently, the heartbeat threads

in the followers will detect this coarse-grained fault and start
a new leader election, which drives the cluster into a healthy
status. Most existing fault injection testing frameworks focus
on coarse-grained faults. Although these schemes are enough
to detect crash recovery bugs or distributed protocol bugs,
they cannot effectively detect FSH bugs.

Inspired by these two key characteristics, we propose Sieve,
a fault injection testing framework designed to detect FSH
bugs in cloud systems. Sieve treats synchronized and timeout-
protected I/O operations as candidate fault points. To identify
candidate fault points, we investigate various synchronized
and timeout mechanisms in cloud systems and conclude four
general patterns from them. Based on these four patterns,
Sieve identifies I/O operations in synchronized and timeout-
protected domains through lightweight static analysis at the
code instruction level. Besides, Sieve automatically instru-
ments hooks before candidate fault points to precisely control
the fine-grained FSH fault injection.

To efficiently explore these candidate fault points, Sieve
adopts grouping and context-sensitive injection strategies.
Specifically, Sieve groups fault points within the same basic
block'. Because fault points within the same basic block
are always under the same high-level system states (e.g.,
leader election and snapshot synchronization) and protected
by the same fault-tolerance handler, which indicates these
fault points trigger similar scenarios. Besides, Sieve leverages
the context-sensitive injection strategy to (1) avoid exploring
the same contexts of fault points and (2) find buggy contexts
of the same fault points. During testing, the hook sends the
fault injection query to the injection controller. The controller
checks the runtime context of the fault point, e.g., call stack
and thread ID, and decides whether to inject the fault.

We have implemented a prototype of Sieve and evaluated
it on three large-scale cloud systems, i.e., ZooKeeper [70],
Kafka [33], and HDFS [2]. Moreover, Sieve has detected
six unknown bugs in these systems. Besides, we have re-
leased Sieve (including bug study, scripts for reproducibility,
and source codes) for public use at https://github.com/
RabbitDong-on/Sieve.

In summary, this paper makes the following contributions:

* We conduct a study of 48 real-world FSH failure cases
from five cloud systems. Our bug study helps develop-
ers to comprehensively understand the characteristics of
FSH failures.

* We propose Sieve, a novel approach that enables fine-
grained FSH fault injection for detecting FSH bugs.
Based on our bug study, Sieve analyzes synchronized
and timeout-protected I/O operations as candidate fault
points. To efficiently explore these candidate fault points,
Sieve adopts grouping and context-sensitive injection
strategies.

! A sequence of consecutive instructions without any branch instructions.
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Table 1: The numbers of FSH Failures.
ZooKeeper HDFS HBase MapReduce

11 18 10 4 5

Cassandra

* We implement a prototype of Sieve and evaluate it on
three large-scale real-world cloud systems. Sieve has
detected six unknown bugs, two of which have been
confirmed.

2 Methodology

To understand the FSH failure, we studied 48 real-world fail-
ures in five popular cloud systems shown in Table 1. We
leverage the search tool in JIRA [54] to identify reports re-
lated to fail-slow hardwares. First, we search reports using
the following keywords: “slow disk”, “slow storage”, “slow
network™, “slow NIC”, and “slow switch”. Second, we ex-
clude the issues that have priority of “Minor”, “Trivial” and
“Low”. Third, we identify the issues that are indeed related to
fail-slow hardwares. Specifically, for each issue, we carefully
read the failure report to obtain an overview of the failure. If
the unit test is provided, we run the unit test to reproduce the
failure. The unit test provides simplified buggy logic, which
is an important guideline for us to read source codes. If the
unit test is absent, we directly read source codes based on con-
versations between the bug reporter and project maintainers.
We can identify the root cause in both scenarios. If the root
cause is related to the delay and the issue report explicitly
mentions the delay is caused by the fail-slow hardware, we
preserve this issue.

Threats to Validity. Like all characteristic studies, the
results of our study should be interpreted with the following
limitations.

Representativeness of the selected systems. The se-
lected systems are diverse, widely-used and open-source:
ZooKeeper [70] is a distributed coordination service; MapRe-
duce [58], HDFS [2], and HBase [23] are the cores of the
dominant Hadoop data analytics platforms; Cassandra [4] is
a highly available peer-to-peer NoSQL database. However,
without accurate market information, it is difficult to conclude
whether we have chosen the most widely-used cloud systems.
Besides, closed-source cloud systems could have different
characteristics.

Limitations of the filtering criteria. We clarify that this
paper focuses on two types of fail-slow hardwares including
the fail-slow storage and network devices. The main reason is
that it is relatively easy for developers to confirm the impact
of the fail-slow storage and network devices, i.e., slow I/O
operations. It is still possible to miss the FSH failures whose
issue reports do not contain the selected keywords. The fail-
slow hardware is difficult to identify [22]. Developers may not
be sure whether the delay is caused by the fail-slow hardware.

Table 2: FSH Failure Symptoms.

Symptom %
Node service unavailable 58.3
Data unavailability 10.4
Data inconsistency 10.4
Job failure 8.3
Performance degradation 6.3
Client stuck 4.2
Node crash 2.1

Hence, the issue report possibly misses the selected keywords.
We did try other keywords like “slow”, and found that the
resulting issue reports contain too many false positives, i.e.,
non-FSH failures. It is impractical to reduce false positives
one by one.

Observer errors. To minimize the possibility of observer
errors, each failure is investigated by two inspectors with the
same criteria. Any disagreement is discussed in the end to
reach a consensus.

3 Understanding FSH Failures

In this section, we present some findings and implications by
analyzing collected FSH failures.

3.1 Findings

Finding 1: Over half (58.3%) of FSH failures cause node
service to be unavailable.

Table 2 shows that FSH failures exhibit various failure
symptoms. Over half of FSH failures cause certain software
functionality or the entire node to be unavailability. In some
cases, even a normal node is removed from the cluster. For
example, in HDFS-9178 [27], the upstream datanode is stuck
in the fail-slow disk. Hence, the downstream node timeouts
when reading the packet from the upstream datanode. Then,
the upstream datanode sends an ACK to the client and sets
the downstream datanode status to ERROR. Finally, the client
excludes the downstream datanode from the pipeline, even
though the upstream datanode is the abnormal one.

Finding 2: 20.8% of FSH failures are silent (including data
unavailability and inconsistency).

These failures are difficult to detect without the correctness
specification. For example, in HBase-26195 [24], synchro-
nizing Hlog to HDFS timeouts due to the fail-slow hardware.
The client receives an exception and rolls back the data pro-
tected by the Hlog. However, this procedure only rolls back
the data in the primary node leading to data inconsistency
between the primary and replicated nodes. Besides, internal
checkers in HBase do not raise any explicit alarms in system



Table 3: FSH Failure Root Causes.

Root cause %
Non-concurrency 81.2
< Indefinite blocking 41.6

< Buggy internal checker 354
o Buggy error checking 20.8
o Buggy error handling 14.6

< Infinite loop 2.1

< Logic error 2.1
Concurrency 18.8

< Data race 16.7

< Deadlock 2.1

logs or immediately stop the system, which makes this failure
detection difficult.

Finding 3: The root causes of studied failures are diverse.
The top three (total 93.7%) root causes are indefinite blocking,
buggy internal checker, and data race.

Indefinite blocking means that synchronized tasks slowed
down by fail-slow hardwares block other tasks for an
uncertain time. In Figure 1, writeRecord within the
synchronized block becomes extremely slow due to the
fail-slow NIC. This synchronized writeRecord blocks all
following write requests from clients. The fine-grained fail-
slow NIC escapes the detection of Heartbeat, which is criti-
cal to trigger this failure. Buggy internal checker incorrectly
handles timeout tasks caused by fail-slow hardwares. For ex-
ample, in HDFS-5522 [26], the delay caused by the fail-slow
disk is treated as a network error. Hence, checkDiskError
is not invoked, which fails a lot of client requests. Data race
occurs between timeout tasks caused by fail-slow hardwares
and timeout handlers. Other root causes include infinite loop,
logic error, and deadlock.

Finding 4: Buggy internal checker fails to correctly handle
timeout tasks.

Buggy internal checker includes buggy error checking and
error handling [67], which are confused by the impact of fine-
grained FSH faults. Specifically, buggy error checking fails
to figure out sources of FSH faults, such as fail-slow disks in
HDFS-5522 [26]. Even though error checking is correct, error
handling may also incorrectly handle FSH faults. For exam-
ple, in MapReduce-1800 [47], the reducer fails to fetch the
mapper’s output due to the reducer-side fail-slow NIC. How-
ever, the reducer can still talk to the job tracker(JT). When a
sufficient number of reducers fail, the normal mapper is black-
listed by the JT. In this example, although error checking
finds the slow network, error handling incorrectly handles this
fault. The fine-grained FSH fault is key to trigger this failure.
Specifically, if a network partition occurs, the reducer cannot
talk to the JT. Hence, the normal mapper is not blacklisted.

Table 4: The percentage of each involved event.

Event type %
Client/Server connection 12.5
Client request 83.7
One fail-slow hardware 89.6
Multiple fail-slow hardwares 10.4
Node reboot/join cluster 4.2

Finding 5: Data race can occur between the timeout task
caused by the fail-slow hardware and the corresponding time-
out handler with simple timing constraints.

The task slowed down by the fail-slow hardware triggers
the timeout mechanism. Moreover, the invoked timeout han-
dler does not end the slow task. Therefore, if the timeout han-
dler finishes before the slow task, this task will corrupt the data
written by the timeout handler. For example, in ZooKeeper-
710 [72], the client connects with the follower that encounters
the fail-slow NIC. This connection request triggers the time-
out mechanism. The invoked timeout handler sends another
connection request to the leader. After successfully connect-
ing with the leader, the former connection request is processed
by the follower and the renewal request is sent to the leader.
The renewal request overwrites the metadata of the current
connection. As a result, the leader still connects with the
client, but cannot process the client request. This data race oc-
curs without the complex thread interleaving control. Besides,
the fine granularity of the fail-slow hardware is necessary to
trigger data race. Specifically, if coarse-grained faults, e.g.,
node crashes and network partitions, occur in the follower,
the renewal request will not be sent to the leader. Hence, data
race does not happen in this scenario. Additionally, our bug
study shows that the buggy timeout mechanism is a new root
cause for concurrency bugs.

Finding 6: Most (89.6%) of FSH failures are caused by one
fail-slow hardware.

As shown in Table 4, the triggering conditions of most
FSH failures do not require multiple fail-slow hardwares
and complex inputs. For example, in HDFS-5341 [25],
DirectoryScanner encounters a fail-slow disk when scan-
ning the dataset with a lock. As a result, DirectoryScanner
blocks the heartbeat and all DataXceiver threads that acquire
the lock. This example only requires simple client requests as
inputs.

3.2 Implications

Overall, our bug study reveals that the FSH failure is a se-
vere problem in cloud systems (Table 2). Most (73.5%) of
studied failures were reported in the last decade. Moreover,
over half (58.3%) of FSH failures cause node service to be
unavailable (Finding 1). Even though existing in-production



detectors [28,39,43,51] can detect part of FSH failures, the
detected failures already cause damages, e.g., node unavail-
ability and data inconsistency [28, 39,43, 51]. Hence, it is
necessary to design an FSH fault injection testing framework
to detect FSH bugs before releasing production. The fault
injection space explosion is a notorious problem in fault injec-
tion techniques [1,6, 14,16,21,31,32,42,48]. However, our
bug study reveals that synchronized and timeout-protected I/O
operations are error-prone, which significantly reduces the
fault injection space. Besides, most FSH failures are caused by
one fail-slow hardware (Finding 6). Hence, the fault injection
space does not increase exponentially due to the combina-
tions of different fault points, which indicates that the fault
injection testing framework can efficiently explore the fault
injection space without complex fault injection strategies.
There are four points to avoid most FSH failures:

* Do not perform I/O operations within synchronization
structures. For example, the solution of the example
in Figure 1 is to copy and serialize data out of the
synchronized block.

Use the fine-grained lock to accurately synchronize I/O
operations.

Collect more information from other components of
cloud systems to figure out sources of FSH faults, e.g.,
the delay from upstream datanode in HDFS-9178 [27],
and take suitable actions.

Avoid data race between the timeout task and timeout
handler. Developers can use timestamps to avoid buggy
execution order.

4 The Sieve Design

In this section, we first discuss Sieve’s fault model (§ 4.1) and
then describe the workflow (§ 4.2) and main components:
Fault Point Analysis (§ 4.3), Injection Controller (§ 4.4),
Workload Driver (§ 4.5), and Failure Checkers (§ 4.6).

4.1 Fault Model

Fail-slow hardwares exhibit two types of fine-grained faults.
The first type slows down partial I/O operations. The second
type incurs exceptions from partial I/O operations. In this
paper, we only focus on the first type and leave the second
type as future work.

Cloud systems are designed to tolerate various faults, but
their fault-tolerance levels are limited. If we inject multiple
faults, the accumulated side effects possibly break cloud sys-
tems as expected. Moreover, one fault is enough to trigger
most FSH failures (Finding 6). Hence, Sieve simulates the
first type by injecting one delay for each test run.

I Fault Point Analysis | | Fault Injection Testing
1

Target system Workload N Failure 3

Driver Checkers

input execution hode status/  °U9°
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1
Instrumentation | | Fail:slow/agent !

Figure 2: The workflow of Sieve.

4.2 Workflow

In a nutshell, Sieve identifies all fault points and then performs
fault injection testing at each fault point. Figure 2 presents
the workflow of Sieve, which consists of two phases. The first
phase (left half of Figure 2) leverages the static analysis to
identify fault points and instruments fail-slow agents within
the cloud system to query fault injection decisions. The sec-
ond phase (right half of Figure 2) treats the fault injection
testing as a series of test runs. For each test run, Sieve lever-
ages the workload driver to exercise the cloud system. When
a fail-slow agent is executed, it sends an RPC query to the
injection controller. The controller decides whether to inject
the fault based on the history injection record. If the fail-slow
agent receives a positive reply, it injects a delay into the cloud
system. During this test run, failure checkers detect abnormal
system behaviors, e.g., system crashes.

4.3 Fault Point Analysis

Cloud systems contain a large number of fault points affected
by fail-slow hardwares. Moreover, most fault points can be tol-
erated by cloud systems [6, 16,39,42]. Therefore, it is imprac-
tical to exhaustively explore all fault points. Based on our bug
study, we observe that synchronized and timeout-protected
I/O operations are error-prone. Hence, our fault point analysis
focuses on these two types of fault points, which can reduce
the fault injection space.

Identify the Synchronized I/O Operation. In general,
synchronized mechanisms have two effects: (1) avoid multi-
ple threads to simultaneously access critical data; (2) control
different tasks to execute in a certain order. There are two cor-
responding patterns of synchronized mechanisms. The first
pattern creates a critical region, e.g., Lines 2-10 in Figure 3.
/O operations (I/O;_3) in the critical region are considered
to be synchronized. To identify these synchronized I/O op-
erations, Sieve needs to find the critical region. The critical
region is wrapped by entry and exit points at the instruction
level. It is non-trivial to identify the critical region by match-
ing the entry point to the correct exit point, since branch and
return instructions introduce more than one exit point. For
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Figure 3: The left part shows an example of creating a critical
region (Lines 2-10). The right part shows low-level instruc-
tions, which only preserve I/O, return, entry and exit points.

Thread-1: Thread-2:

ey

Figure 4: An example of controlling the execution order of
Task; » via the barrier.

example, in Figure 3, there are three exit points. If Sieve
matches the entry point to the first or last exit points, it will
miss a synchronized I/O operation (I/O3) or incorrectly treat
a non-synchronized I/O operation (I/O4) to be synchronized.

To match the correct exit point, the intuitive method is
to (1) understand how the programming language designs
the interaction among the critical region, branch, and return
instructions (2) and design a search algorithm that leverages
former understanding. However, the first step is difficult and
requires large human efforts. Hence, we try another practical
method. Specifically, we analyze different combinations of
the critical region, branch, and return instructions case by
case. In this process, we observe that the correct exit point is
the last not followed by the return instruction, i.e., the second
exit point in Figure 3. Based on this observation, Sieve can
correctly identify the critical region and synchronized 1/O
operations in practice. Specifically, Sieve traverses the call
graph” twice. (1) If encountering an entry point, Sieve pushes
this entry point into a stack. Subsequently, if encountering an
exit point not followed by the return instruction, Sieve pops
the top non-entry point from the stack and pushes this entry
point into the stack. If the encountered exit point is followed
by the return instruction, Sieve just ignores this exit point.
Finally, all entry and matched exit points stored in the stack
confirm all critical regions. (2) Sieve identifies I/O operations
in critical regions.

2A directed acyclic graph. Its vertex represents a function and its edge
means a function call relation

The second pattern creates a hard barrier that makes sure
one task is executed before the other, e.g., notify () and
wait () create a barrier in Figure 4. I/O operations (I/O1)
before the barrier are considered to be synchronized. Iden-
tifying these synchronized I/O operations is trivial. Sieve
traverses the call graph, finds barriers, and identifies I/O oper-
ations before these barriers. Timeout mechanisms also have
this pattern that creates a soft barrier (using notify () and
wait (timeout value)) that means the latter task (Task,)
can timeout and invoke timeout handler to process the former
task (Task;). Sieve uses the same method to deal with this
pattern of timeout mechanisms.

Identify the Timeout-protected I/O Operation. Timeout
mechanisms are commonly used to handle unexpected faults
in cloud systems. After investigating several cloud systems,
we conclude two general patterns of timeout mechanisms.
One has been discussed in § 4.3.

The other is related to get-time functions, e.g., nanoTime
and currentTimeMillis inJava. Specifically, cloud systems
record startTime and endTime assigned by get-time func-
tions and calculate elapsedTime = endTime - startTime
to obtain the execution time of the task. If elapsedTime ex-
ceeds the predefined timeout value, the timeout handler is
invoked to process this abnormal task. We define the timeout
scope as the scope between assignments of startTime and
endTime. I/O operations in the timeout scope are considered
to be timeout-protected. To identify these timeout-protected
I/O operations, Sieve needs to match startTime to the corre-
sponding endTime, which is non-trivial. In real-world cloud
systems, there are many {startTime,endTime} pairs inter-
leaving with each other, e.g., {startTime;,endTime; } inter-
leaves with {startTime;,endTime;} in Figure 5. Moreover,
most {startTime, endTime} pairs usually have irregular vari-
able names. Hence, we cannot distinguish which endTime
(endTime; ») is matched to startTime;. When reviewing this
pattern, we note that startTime and the matched endTime must
appear in the same formula: elapsedTime = endTime - start-
Time. Based on this observation, Sieve can correctly identify
timeout-protected I/O operations. Specifically, Sieve (1) col-
lects all variables (startTime; » and endTime; ) assigned by
get-time functions as a get-time set. (2) then checks all ex-
pressions whose forms are A=B-C. If two operators in the
expression are in the get-time set and the result of this ex-
pression is used in If expression, this expression is the target
formula (elapsedTime; = endTime; - startTime;). The two
operators (startTime; and endTime) in this expression cor-
rectly confirm a timeout scope (timeoutscope;). (3) finally
identifies all I/O operations in the timeout scope.

Instrument the Fail-Slow Agent. To enable fine-grained
fault injection, Sieve instruments fail-slow agents before can-
didate fault points, i.e., synchronized and timeout-protected
I/0 operations. When the fail-slow agent is reached at runtime,
it sends a query to the injection controller, which includes the
current call stack, instrumented function information, instru-
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Figure 5: An example of identifying timeout-protected I/O
operations.

mented position, and thread ID. If the reply is positive, the
fail-slow agent invokes Thread. sleep. Additionally, Sieve
instruments some hooks to obtain timeout values.

4.4 Injection Controller

In the fault injection phase, Sieve injects one fault for each test
run. In each test run, the injection controller receives many
injection requests from fail-slow agents, collects the informa-
tion from injection requests, and decides on the fault injection.
Finally, only one of the agents obtains a positive reply. To
efficiently explore candidate fault points, Sieve implements
grouping and context-sensitive injection strategies.
Grouping Injection Strategy. Through the fault point anal-
ysis, Sieve has pruned many fault points with a low possibility
of triggering FSH bugs. However, there are still a large num-
ber of fault injection choices. It is inefficient to exhaustively
explore all choices. We note many fault injections explore
similar scenarios when these fault points are within the same
basic block. Because different I/O operations within the same
basic block are always under the same high-level system states
(e.g., leader election and snapshot synchronization) and pro-
tected by the same fault-tolerance handler. To further reduce
the fault injection space, Sieve groups fault points within the
same basic block and selects the last fault point as the repre-
sentative of the group. The fault point analyzer implements
this grouping strategy by instrumenting the fail-slow agent
before the last fault point within the same basic block.
Context-sensitive Injection Strategy. In addition to group-
ing fault points, Sieve implements a context-sensitive strategy
(listed in Algorithm 1) to (1) find the buggy context of the
fault point (2) and avoid repeatedly injecting faults at the same
point under the same context. Specifically, Sieve collects the
call stack of the fault point carried by the injection request
(Line 20). When an injection request is received, Sieve checks
whether the corresponding fault point has already been ex-
plored. If the fault point is not explored, Sieve grants this fault
injection. Otherwise, Sieve compares call stacks of previous
fault injections with that of current fault injection (Lines 15-
19). If the current call stack is unique, Sieve injects one fault

Algorithm 1: Fault injection strategy

1 Function scheduleFaultInjection (request):
if /checkRequest(request) then
\ return false;
end
Sfault < getFault(request);
if fault.type=SYNC then
delayTime <— 5601000 ;
7 else
delayTime <+ 3 x get TimeOutValue(fault)/2 ;
8 grant(request,delayTime);
9 Function checkRequest (request) :
10 if isInjected then

A U R W N

11 | return false;
12 end
13 curContext < getContext(request);

14 curFault < getFault(request);
15 foreach preContext € historylnfo.contexts() and
preFault € historylnfo.faults() do

16 if preFault=curFault and
preContext.contain(curContext) then

17 | return false;

18 end

19 end

20 record(historyInfo,curContext,curFault);

21 return rrue;

at this point.

Fault Impact. Except for injection strategies, Sieve needs
to determine how long the delay lasts. Specifically, Sieve
checks the type of the fault point after receiving the injection
request (Line 5). If the injection request comes from the syn-
chronized I/O operation, Sieve uses 5 minutes as the default
delay which is enough to cause indefinite blocking (Line 6).
Hence, the gray failure checker in Sieve can detect this bug.
Meanwhile, this delay duration does not significantly extend
the evaluation time.

For the timeout-protected I/O operation, the delay dura-
tion is two-thirds of the timeout value (Line 7). In this way,
Sieve not only triggers timeout mechanisms to mislead in-
ternal checkers but also reorders timeout tasks and timeout
handlers. Sieve obtains timeout values by analyzing two gen-
eral patterns shown in § 4.3 and instrumenting hooks. When
hooks are reached at runtime, they send timeout values to the
injection controller.

4.5 Workload Driver

Sieve leverages the workload driver to exercise a target cloud
system. The workload driver can use various sources ranging
from simple unit tests to carefully-crafted test cases as work-
loads. For each cloud system, we either implement several
common workloads or select several existing test cases as



workloads shown in Table 5.

The workflow of the workload driver is as follows. First, the
workload driver creates multiple clients and each client con-
nects with one system node. Hence, if the client encounters
an exception, it can send an RPC request to failure checkers
reporting the corresponding system node is suspicious. Sec-
ond, the client executes the workload. If the client finishes
the workload, it sends an RPC request to failure checkers
reporting the workload progress. Finally, the workload driver
restarts the target system for each test run to avoid the impact
of previous injected faults.

4.6 Failure Checkers

To determine whether a bug occurs in cloud systems, Sieve
provides two checkers:
* Log error checker. It scans the execution log of each
system node to check whether there are FATAL, ERROR,
and WARN entries or uncommon exceptions.

* Gray failure checker. It is a simplified version of
Panorama [28] to identify whether differential observ-
ability exists. This checker marks the test run suspicious
if (1) the system’s internal checker indicates a node
is healthy, but the node’s client reports errors. Specifi-
cally, this checker receives an RPC request that reports
errors from the client, while obtaining a healthy sta-
tus of the corresponding node by existing tools, e.g.,
./zkServer.sh status in ZooKeeper. (2) a subset of
clients do not finish their workloads. Specifically, this
checker does not receive RPC requests that report the
workload progress from a subset of clients.

As a testing framework, developers can flexibly add specific
checkers to assert system properties they care about, such as
performance bug [35] and inconsistency [40].

S Implementation

We have implemented Sieve in Java with around 8,100 SLOC
for core components. The fault point analyzer is built on top
of Soot, a Java program analysis framework [59]. Sieve instru-
ments cloud systems using Javassist, a Java bytecode instru-
mentation toolkit [30]. The injection controller is designed in
a client-server architecture via Java RMI for RPCs.

I/0 Operation Identification. Sieve identifies all I/O oper-
ations by statically analyzing cloud systems. If the function is
implemented by general I/O packages, it is treated as an I/O
operation. Sieve analyzes five general I/O packages, including
java.io, java.nio, java.net, javax.net and io.netty.
Additionally, some cloud systems implement their customized
I/O operations, e.g., serialize/deserialize APIs in class Record
of ZooKeeper. Sieve also identifies such I/O operations.

Timeout Value Collection. Sieve analyzes two general
patterns of timeout mechanisms presented in § 4.3. For the

Table 5: The evaluated systems.

System Release Workload

ZooKeeper (ZK) 39.0 Create/read/update/delete znode
Kafka (KA) 3.6.0 Producer/consumer performance test
HDFS 3.3.6 Read/write/move/put file

first pattern, Sieve instruments hooks before soft barriers, e.g.,
wait in Java. The hooks intercept barriers and capture their
parameters. For the second pattern, Sieve finds elapsedTime
through the taint analysis. Sieve instruments a hook before
CMP instruction that contains elapsedTime. The hook captures
the other operator of CMP instruction. The captured parameters
and operators are timeout values. Finally, the hooks send
timeout values to the injection controller.

6 Evaluation

Our evaluation aims to answer two questions: (1) How effec-
tive is Sieve in detecting bugs? (2) How does Sieve compare
with state-of-the-art fault injection approaches?

Evaluated Systems. We evaluated Sieve by using three
widely used and open-source cloud systems in Table 5. Note
that Kafka [33] is not included in our bug study, which is a
popular stream-processing service. To prove that Sieve is not
specific to the five studied systems, we selected Kafka as a
benchmark. All target systems are the latest versions during
the experiments.

Setup. We apply default configurations to all cloud systems
and deploy a cluster of cloud systems on a single physical
machine using dockers. The physical machine contains two
Intel Xeon Gold 6230R CPUs, which include 52 cores, and
192GB DRAM running Ubuntul8.04. In the evaluation, the
cluster consists of either three nodes for ZooKeeper and Kafka
or four nodes for HDFS. The fault injection experiment for
each system consists of 2000 test runs. The time of each test
run varies depending on how the system reacts to the injected
faults and whether it fails early or not. The experiment time for
the three systems is 20.9 hrs, 24.9 hrs, and 29 hrs respectively.

6.1 Effectiveness of FSH Bug Detection
6.1.1 Methodology

We apply Sieve to the target systems and check whether Sieve
can detect unknown bugs and reproduce studied bugs.

6.1.2 Detecting Unknown Bugs

As shown in Table 6, Sieve has detected seven FSH bugs, in-
cluding six unknown bugs and one known bug (HDFS-15869).
Moreover, ZK-4836 and KAFKA-16412 have been confirmed
by developers. Although HDFS-15869 was reported by de-
velopers, it has not been fixed yet. Hence, Sieve can detect



Table 6: Bugs detected by Sieve. The last five columns show whether the bugs are detected by different approaches shown in

Table 7.
Bug ID Failure Symptoms Random FATE Legolas Chronos Sieve-I Sieve-S Sieve
7ZK-4816 A follower cannot follow the leader for a long time (more than 30 seconds)
ZK-4817 CancelledKeyException cannot catch the client disconnection exception
Unknown Bugs ZK-4844 Fail-slow disk while executing writeLongToFile causes the follower to hang
ZK-4836 Inconsistent ACL index leads to MarshallingError

KAFKA-16401  One request consumes all request handler threads
KAFKA-16412  An uncreated topic is considered as a created one

Known Bugs ~ HDFS-15869 Namenode hangs due to the slow sendResponse
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HDFS-15869. Moreover, we did not know about HDFS-15869
before. These bugs cause node hang, uncaught exceptions,
node crash, and semantic violation.

7ZK-4816. A follower cannot join the cluster for a long
time (more than 30 seconds). Specifically, the cluster consists
of three nodes. The first node becomes the leader after the
election. The leader is stuck in serializing the snapshot to the
local fail-slow disk. The followers disconnect from the leader,
since their sync operations are blocked by the snapshot serial-
ization in the leader. These two followers start a new leader
election. The second node becomes the new leader. However,
the old leader does not change the node status. There have
been two leaders in the cluster for a long time. The third node
is confused and cannot follow any leader for a long time.

7ZK-4817. CancelledKeyException cannot catch the
client disconnection exception in some cases. Specifi-
cally, NIOServerCxn throws CancelledKeyException if
the client disconnects from the server abnormally. When
NIOServerCxn executes doIO, the disk becomes fail-slow.
The client cannot receive heartbeats and disconnects from
the server. If doI0 is blocked for 30 seconds, NIOServerCxn
throws CancelledKeyException. However, when doIO is
stuck for more than 30 seconds, CancelledKeyException
disappears in system logs. Although the clients dis-
connect from the server abnormally in two scenarios,
CancelledKeyException does not work in the latter sce-
nario.

7XK-4844. Fail-slow disk while executing writeLongToFile
causes the follower to hang. Specifically, the follower exe-
cutes writeLongToFile slowed down by the fail-slow disk.
The internal checker is blocked by writeLongToFile. The
leader excludes the follower from the cluster, but the follower
believes that it still acts as a follower. As a result, all requests
sent to the follower cannot be processed. This bug is simi-
lar to Zookeeper-4074 [71]. Zookeeper-4074 can be solved
by adding -Dlearner.asyncSending=true. However, this
method cannot solve ZK-4844.

7ZK-4836. An inconsistent ACL index leads to Mar-
shallingError. Specifically, when a leader creates a node (NO)
with an ACL entry (ACL_0) and deletes it due to the node
deletion (assume the current aclindex is 0). A follower starts
to synchronize the snapshot (including the ACL table and
datatree) with the leader. When synchronizing the ACL table
to the follower, the NIC becomes fail-slow, which slows down

the ACL table transmission. Meanwhile, a client sends a re-
quest that creates a node (N1) with a new ACL entry (ACL_1)
to the leader. In the leader, the datatree contains N1->1 (in-
dicates that N1 points to the second slot of the ACL table)
and the ACL table contains 1->ACL_1 (indicates that ACL_1
is stored in the second slot of the ACL table). The leader
synchronizes the updated datatree to the follower. When the
follower deserializes the new datatree, the aclindex is set to
the number of elements in the ACL table. The follower con-
tains the old ACL table (aclindex=0) and the new datatree
(N1->1). The ZAB protocol synchronizes the client creation
request from the leader to the follower. When replaying the
client creation request in the follower, ACL_1 will be added
into the first slot of the ACL table (0->ACL_1). However, the
node N1 still points to the second slot of the ACL table (N1-
>1). Finally, when executing getAcl N1, MarshallingError
arises, which leads to the follower crash.

KAFKA-16401. One request consumes all request han-
dler threads. Specifically, a consumer request is stuck in
storeOffsets slowed down by the fail-slow disk. The thread
response for this request is blocked and holds a group lock.
Due to timeouts, the consumer resends requests to the broker.
All request handler threads are quickly occupied by these re-
quests and stuck in acquiring the group lock. As a result, new
requests cannot be processed.

KAFKA-16412. An uncreated topic is considered as a
created one. Specifically, a client sends the request for topic
creation to the broker. Another client also sends the same
request to the broker. When the first request is not finished,
the second one fails and returns TopicExistsException to
the second client. However, subsequent requests that operate
on this unestablished topic from the second client fail, which
confuses the second client.

HDFS-15869. Namenode hangs due to the slow
sendResponse. Specifically, a client sends a write request.
When the namenode handles this request and writes the ed-
itlog to the disk, the disk becomes fail-slow. The thread re-
sponse for writing the editlog is stuck, so that it does not
process the following write requests from clients.

Except for five detected bugs in ZooKeeper and HDFS,
Sieve also detects two bugs in Kafka that are out of the five
studied systems. Because (1) Sieve is designed to detect FSH
bugs for most cloud systems that contain synchronized and
timeout mechanisms, not just the studied systems. (2) There
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are buggy synchronized and timeout mechanisms in Kafka.

6.1.3 Reproducing Studied Bugs

To further evaluate Sieve’s effectiveness, we try to reproduce
all studied bugs. For each bug, we first check whether Sieve
can correctly identify its corresponding fault point. If success-
ful, we further modify Sieve and only inject the FSH fault at
the corresponding point to detect the bug. If the failure report
provides workloads, Sieve directly uses them. Otherwise, the
workloads shown in Table 5 are used. When the checkers
mark test runs suspicious, we manually check whether their
symptoms and system logs are consistent with the original
failure report in JIRA. If consistent, the corresponding bug is
successfully reproduced.

Sieve successfully reproduces 34 of 48 studied bugs. There
are 14 bugs not reproduced. For the five bugs (HBase-11536,
HDFS-3493, HDFS-11755, HDFS-16659, and MapReduce-
1800), multiple fault injections within one test run are neces-
sary. However, Sieve currently focuses on a single fault injec-
tion. To reproduce these five bugs, we need to provide multiple
buggy fault points and the correct fault injection order. More-
over, for the first four bugs, we need to provide additional
checkers due to their silent symptoms (Finding 2). For the re-
maining six silent bugs (ZK-417, HDFS-7065, HDFS-10301,
HDFS-13111, HBase-26195, and HBase-13430), Sieve fails
to reproduce them due to the absence of accurate checkers. For
the bug (ZK-4293), the complex thread interleaving causes
deadlock. However, Sieve is designed to detect concurrency
bugs with simple timing constraints (Finding 5). Although
Sieve fails to reproduce the above twelve bugs, it can iden-
tify buggy fault points. However, Sieve fails to reproduce the
remaining bugs (HBase-12270 and HBase-27947), since the
static analysis in Sieve cannot analyze the synchronized data
structures, i.e., the FIFO queue in these two bugs. To repro-
duce these two bugs, we need to extend the static analysis in
Sieve to analyze the FIFO queue.

6.2 Comparison with Alternative Fault Injec-
tion Approaches

6.2.1 Methodology

We compare Sieve with six alternative fault injection ap-
proaches shown in Table 7. These approaches include coarse-
grained (FATE) and fine-grained (Random, Legolas, Chronos,
and two variants of Sieve) tools.

Random is implemented as the baseline of the fault injec-
tion strategy. We reuse the client-server architecture of Sieve
and instrument the fail-slow agent before each I/O operation.
When the fail-slow agent is reached at runtime, the injection
controller randomly grants an injection request.

FATE [21] focuses on node-level faults, making it not di-
rectly comparable to Sieve. We re-implement its fault injec-
tion strategy in Sieve to attempt meaningful comparisons.

Table 7: Settings for Alternative Approaches. S/T 1/O op-
erations represent synchronized and timeout-protected I/O
operations.

Approach Fault Point Injection Strategy
Random All I/O operations Random

FATE [21] All I/0O operations Context-sensitive
Legolas [62]  All I/O operations Abstract state and bsrr
Chronos [8] T 1/O operations Deep-priority

Sieve-1 S/T I/O operations Context-insensitive
Sieve-S S/T I/O operations Context-sensitive

Sieve S/T I/O operations ~ Grouping and context-sensitive

Specifically, we define the failure ID like FATE, which com-
prises the class name, function name, line number, and call
stack of the I/O operation. The injection controller can re-
ceive injection requests from all I/O operations and grant an
injection request whose failure ID is unique.

Legolas [62] is a state-of-the-art fine-grained fault injec-
tion tool. Legolas infers abstract states of cloud systems and
stores fault points in queues. The fault injection strategy of
Legolas is called budgeted-state-round-robin (bsrr). Specif-
ically, Legolas selects a queue in the round-robin way and
dequeues a fault point to test.

Chronos [8] is a state-of-the-art fine-grained delay injec-
tion tool and adopts the deep-priority guided algorithm to
detect timeout bugs. However, its core components are not
available. Hence, we re-implement its fault injection strat-
egy in Sieve. Specifically, the injection controller records
timeout-protected I/O points, randomly selects six fault points
to explore and records new fault points that only appear after
injecting delays. If the depths of new fault points are larger
than the average depth of selected fault points, Sieve injects
delays at new fault points and selected fault points in the next
test run. The depth of a fault point means the number of pre-
ceding fault points that include tested and untested fault points
in the execution path. If there is not a new fault point, the
injection controller randomly selects six fault points again.

Sieve-I adopts the context-insensitive injection strategy
which means that all identified fault points are explored once.
Except for the injection strategy, other components of Sieve-I
are the same as Sieve.

Sieve-S is built on top of Sieve-I. Sieve-S explores identi-
fied fault points multiple times. We evaluate the effectiveness
of grouping and context-sensitive strategies by comparing
Sieve-S with Sieve and Sieve-I respectively.

All the above six approaches are performed with the same
settings as Sieve, i.e., cluster configurations, failure checkers,
workload driver, and 2000 test runs that consume more than 20
hours. Additionally, Chronos injects multiple faults since its
strategy is designed to explore the combinations of different
delays. Except for Chronos, the remaining five approaches
inject one fault for each test run. Legolas uses its fault point
configuration, which injects a one-minute delay for each test
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Table 8: # Dynamic/Static fault points indicate the number of injected and candidate faults. S/T indicates that Sieve identifies all
synchronized and timeout-protected fault points. S/T+Gr indicates that Sieve applies the grouping strategy to S/T fault points.

# Dynamic fault points

# Static fault points

Random FATE Legolas Chronos Sieve-I Sieve-S Sieve All S/IT  S/T+Gr
ZooKeeper 2000 2000 2000 2000 423 1291 705 1905 1266 856
Katka 2000 2000 2000 2000 267 1968 967 1953 1090 780
HDFS 2000 2000 2000 2000 383 883 658 4216 1974 1568

run. Random and FATE also inject a one-minute delay for
each test run like Legolas.

6.2.2 Comparison Result Analysis

Compared with alternative approaches, we aim to answer one
question: is Sieve more effective and efficient in detecting
FSH bugs? We answer this question from two aspects: the
number of detected bugs and explored fault points.

The Number of Detected Bugs. Table 6 shows that Sieve is
more effective in detecting FSH bugs. Random does not detect
any bugs since it misses buggy fault points in deeper system
states due to injecting faults at the beginning of workloads.

Compared with FATE and Legolas, four out of seven FSH
bugs can only be detected by Sieve. FATE exhaustively ex-
plores the huge fault injection space, which is impractical
and inefficient. Hence, FATE misses the buggy points of ZK-
4816, ZK-4844, and KAFKA-16401 within 2000 test runs.
Although we can add more test runs, FATE will generate more
reports which require large human efforts to confirm true bugs.
Legolas fails to detect ZK-4816 and ZK-4844 due to the same
reason. For ZK-4817, to observe different behaviors in system
logs, injecting fault twice with different delay durations at
the buggy fault point is necessary for the checkers. Although
FATE and Legolas may explore this point multiple times, the
duration of the injected delay does not change. Hence, FATE
and Legolas fail to detect ZK-4817. ZK-4836 is a concurrency
bug and requires a suitable timing constraint. However, the
long delay (1min) injected by FATE and Legolas causes the
client creation request to timeout, so that the updated datatree
will not be synchronized to the follower. As a result, ZK-4836
does not occur. Therefore, FATE and Legolas fail to detect
ZK-4836.

Compared with Chronos, Sieve detects five more bugs. ZK-
4816, ZK-4844, and HDFS-15869 are out of the scope of
Chronos since these bugs are not related to timeout mecha-
nisms. Chronos fails to detect ZK-4836 since multiple delay
injections cause the client creation request to timeout, like a
single long delay injection in FATE and Legolas. For KAFKA-
16401, Sieve injects a delay before the synchronized I/O point
on the server side, which causes the client to frequently retry
the timeout request. If Chronos wants to detect KAFKA-
16401, it needs to repeatedly inject a delay before the same
I/O point on the client side. However, this scenario contra-

dicts the deep-priority guided algorithm of Chronos, which
aims to explore the combinations of different delays. Chronos
can detect ZK-4817 and KAFKA-16412 thanks to our broad
log error checker. The original failure checkers of Chronos
described in its paper detect two symptoms: server crash and
service hang. However, ZK-4817 and KAFKA-16412 do not
cause these two symptoms. Therefore, Chronos should have
failed to detect the two bugs.

The Number of Explored Fault Points. We record the
number of dynamic and static fault points in Table 8. The
number of dynamic fault points is less than 2000, which in-
dicates all fault points exposed under current workloads are
explored. Tables 6 and 8 show that Sieve can explore fewer
fault points, while detecting more bugs. However, Random,
FATE, and Legolas explore too many useless fault points to
detect some FSH bugs. In some worse cases, Random even
repeatedly explores the same fault under the same runtime
context. Compared with FATE, Sieve-S can efficiently detect
more FSH bugs, since our bug study reveals that synchronized
and timeout-protected I/O operations are error-prone, which
significantly prunes the fault injection space. Besides, thanks
to the effective context-sensitive strategy, Sieve-S explores
more useful contexts of fault points and further detects more
FSH bugs than Sieve-1. Moreover, compared with Sieve-S,
Sieve explores fewer fault points without compromising the
number of detected bugs, which indicates that the grouping
strategy is effective. In summary, Sieve is more efficient in
detecting FSH bugs thanks to its effective design.

Chronos aims to explore the combinations of different de-
lays, which cause the fault injection space to increase in an
exponential manner. Therefore, Chronos implements a deep-
priority guided algorithm to efficiently explore such huge
fault injection space. However, Sieve focuses on the practical
and common scenario, i.e., one delay injection (Finding 6).
Chronos and Sieve have different target scenarios. Hence, we
do not compare with Chronos in this aspect.

6.3 False Positive

Threats of false positives come from two sources. The first
source is injected faults. If the injected fault is not realistic,
a false positive arises. Specifically, injecting delays before
non-blocking I/O operations causes false positives. To elimi-
nate these false positives, Sieve simulates a 10s delay for the



fail-slow disk and NIC using the device mapper (DM) and
traffic control (TC) in Linux (a 10s delay is suitable since
it exceeds the time consumed by normal I/O operations and
does not break cloud systems). As a result, the consumed time
of the non-blocking I/O operation is less than 10 seconds. Be-
cause the non-blocking mechanisms are implemented above
the layer that simulates the fault using DM and TC in Linux,
which indicates the non-blocking I/O operation returns before
reaching the simulated fault. Based on this feature, Sieve re-
executes the suspicious test run marked by failure checkers
and calculates the time consumed by the explored I/O oper-
ation. If the consumed time is less than 10 seconds, Sieve
abandons the report of the suspicious test run. Overall, the
faults injected by Sieve do not cause any false positives. In ad-
dition, the fault simulated by DM and TC slows down all I/O
operations, which cannot enable fine-grained fault injection.
The second source is failure checkers. The gray failure
checker is a simplified version of Panorama [28], so it cannot
obtain comprehensive information of components in cloud
systems. For example, in Zookeeper, if Sieve injects a delay
on the client side when the client connects to the server, the
gray failure checker will obtain an error report from the client.
Meanwhile, the gray failure checker obtains a healthy status
of the server by using ./zkServer.sh status provided by
Zookeeper. Based on different server statuses observed by the
client and server, the gray failure checker reports a bug. In
fact, the reported bug is a false positive. The log error checker
also makes mistakes. For example, our checkers mark a test
run suspicious when a fault is injected in LearnerHandler
since ERROR entries appear in system logs. However, such
ERROR entries are expected behaviors in ZooKeeper. To
eliminate these false positives, for each suspicious test run,
we (1) read system logs to understand system behaviors; (2)
check whether system behaviors are consistent with design
documentation. (3) report this bug to developers and discuss it
with them. In the near future, we plan to enhance our checkers
by using more accurate rules. However, our core contribution
focuses on our bug study and fault injection methodology.

6.4 Overhead Analysis

Table 9 shows the runtime overhead of Sieve. The Baseline
column shows the original workload run time without any
instrumentation. The Info Collection column shows the av-
erage fault-free run time of the instrumented system. The
Average Test Time column shows the average run time with
one fault injection.

The results show that Sieve introduces 1.1x to 4.9 base-
line time for runtime information collection. On average,
testing a fault point consumes around 1.9x to 6.3 baseline
time. Each test run includes a series of operations such as ini-
tializing the execution environment, executing the workload,
collecting runtime information, deciding the fault injection,
and checking failure symptoms. Additionally, the static anal-

Table 9: Runtime Overhead (in seconds).

System Baseline Info Collection Average Test Time
ZooKeeper 9.41 13.17 37.64

Kafka 7.12 34.89 44.86

HDFS 24.87 27.36 52.23

ysis completes in three minutes and consumes at most 8GB
memory for each cloud system.

7 Discussions

Fault Model. Sieve currently injects one delay to simulate the
fail-slow hardware. However, the fail-slow hardware may in-
cur other subtle faults such as exceptions and multiple delays.
Hence, Sieve misses some bugs caused by these subtle faults.
For example, in § 6.1.3, Sieve fails to detect five bugs caused
by other subtle faults. Extending Sieve to support more fault
models becomes our future work.

Fault Point Analysis. The keywords, e.g., synchronized,
used in synchronized and timeout mechanisms are necessary
for the fault point analysis in § 4.3. Sieve has analyzed several
most common keywords: synchronized, lock,wait, await,
tryacquire, join, nanoTime and currentTimeMillis.
Our implementation is modular, which makes it convenient
for developers to add more keywords and patterns completing
the fault point analysis in Sieve.

Workload Driver. Table § indicates current workload
drivers cannot trigger all candidate fault points since the used
workloads are simple, which limit the code coverage. Fuzzing
is an automatic input generation technique [3, 7, 13, 20, 49,
60, 63, 64, 69] that can improve the code coverage. Devel-
opers can integrate fuzzing tools into Sieve to explore more
candidate fault points.

8 Related Work

Fault Injection. In recent years, various fault injection tech-
niques [1,6, 15-17,21, 31, 32,42, 48] have been proposed
to detect bugs triggered by various faults in cloud systems.
Many existing schemes focus on coarse-grained faults and
adopt various fault injection strategies. For example, Crash-
Tuner [42] injects node crashes when meta-info variables are
accessed; NEAT [1] provides simple APIs for developers to
inject network partitions. Unlike them, Sieve instruments fail-
slow agents before I/O operations to enable fine-grained FSH
faultinjection. Recent fine-grained delay injection tools [8,62]
fail to efficiently explore the FSH fault injection space due
to overlooking the characteristics of FSH failures. Our work
provides a bug study to analyze FSH failures and concludes
some findings shown in § 3 Inspired by our bug study, Sieve is
proposed to efficiently explore the FSH fault injection space.



CORDS [14] and WASABI [55] inject expections into
cloud systems to detect error handling bugs. However, Sieve
injects delays to detect FSH bugs. Sieve is orthogonal to
CORDS and WASABI.

Distributed System Model Checker. Distributed system
model checkers [34,45, 66] intercept non-deterministic dis-
tributed events and permute their ordering. These schemes
detect protocol bugs caused by complex interleaving of node-
level events, such as message and node crash/reboot, while
Sieve aims to detect implementation-level bugs triggered by
fine-grained FSH faults. Sieve is complementary to existing
schemes.

Distributed Concurrency Bug Detection. Several
schemes [36,38,41,68] have been proposed to detect concur-
rency bugs in cloud systems. For example, DCatch [36] uses
specific happen-before rules to identify conflicting operations
and reorders them. Sieve is an FSH fault injection framework
that aims to detect diverse bugs including concurrency bugs.

Bug Studies on Fail-Slow Incidents. Guanwai et al. [22]
present a study of fail-slow hardwares and analyze how fail-
slow hardwares occur. Several works [39, 43, 51] provide
studies of fail-slow failures at the software level and analyze
how to accurately detect fail-slow failures by in-production
monitoring. However, unlike them, our bug study aims to
study how fail-slow hardwares affect the software so that we
can design an effective and efficient fault injection tool to
detect FSH bugs before releasing production. Besides, our
bug study shows that FSH failures caused by fail-slow hard-
wares include fail-slow and fail-stop failures. Our bug study
is complementary to existing bug studies.

Fail-Slow Failure Detection. Several works [28, 39,
43, 51] develop advanced detectors for fail-slow failures.
Panorama [28] detects fail-slow failures by enhancing the
observability of different system components. IASO [51]
detects fail-slow nodes based on timeout signals and peer
evaluation. OmegaGen [39] generates customized watchdogs
for detecting and localizing fail-slow failures. PERSEUS [43]
leverages machine learning techniques to detect fail-slow fail-
ures. These detectors focus on in-production monitoring and
require a significantly long time to detect failures, which are
not suitable for testing before releasing production. For exam-
ple, ISAO has been deployed for more than 1.5 years to catch
fail-slow failures. However, Sieve focuses on detecting FSH
bugs before releasing production by injecting FSH faults.

9 Conclusion

Fail-slow hardwares cause severe failures in cloud systems.
This work presents a study of 48 real-world FSH failures in
cloud systems to analyze their characteristics. We propose
Sieve, a novel fault injection testing framework that enables
fine-grained FSH fault injection for detecting FSH bugs. Sieve
treats synchronized and timeout-protected I/O operations as
candidate fault points that are likely to trigger FSH bugs.

Sieve implements grouping and context-sensitive injection
strategies to efficiently explore candidate fault points. Our
evaluation shows that Sieve is effective and efficient in detect-
ing FSH bugs in real-world cloud system.
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